Sony develops high frame rate single lens 3D camera technology

In existing half mirror 3D camera systems with separate lenses for the left and right eyes, the parallax range is adjustable, enabling the depth of the 3D images to be modified . However, when operating the zoom and focus functions of such systems, the sensitivity of the human eye, in particular to differences in the size and rotational movement of dual images, as well as any vertical misalignment or difference in image quality has meant that complex technology has been required to ensure that each camera lens is closely coordinated, and there are no discrepancies in the optical axis, image size, and focus. The introduction of a single lens system resolves any issues that may occur as a result of having different optical characteristics for each eye. Furthermore, by using mirrors in place of shutters, incoming light can now be simultaneously separated into left and right images and recorded as it reaches the parallel light area (the area where diverging light from the point of focus on the subject matter becomes parallel) of the relay lens. The separated left and right images are then processed and recorded with the respective left and right image sensors. As there is no difference in time between when the left and right eye images are captured, it is possible for natural and smooth 3D images to be captured, even of scenes involving rapid movement.

Optical tests have shown that a frame rate 240fps represents the limit of human visual perception, and beyond that it becomes difficult to detect differences in terms of blur and "jerkiness" of moving images (where images that were continuous are now seen as a series of distinct snapshots). By developing a 240fps frame rate CMOS image sensor with properties close to the human eye, which is capable of capture natural images of even fast moving subject matter, Sony has succeeded in further enhancing the quality of 3D video images.